
www.manaraa.com

The Oz Programming ModelGert SmolkaProgramming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germanyemail: smolka@dfki.uni-sb.deJuly 1995AbstractThe Oz Programming Model (OPM) is a concurrent programming model sub-suming higher-order functional and object-oriented programming as facets ofa general model. This is particularly interesting for concurrent object-orientedprogramming, for which no comprehensive formal model existed until now.The model can be extended so that it can express encapsulated problem solversgeneralizing the problem solving capabilities of constraint logic programming.OPM has been developed together with a concomitant programming languageOz, which is designed for applications that require complex symbolic computa-tions, organization into multiple agents, and soft real-time control. An e�cient,robust, and interactive implementation of Oz is freely available.This paper has appeared in: Computer Science Today, Jan van Leeuwen, editor,Lecture Notes in Computer Science, Volume 1000, pages 324{343, Springer-Verlag, Berlin, 1995.

www.manaraa.com

Contents1 Introduction 32 Computation Spaces 43 Concurrency and Parallelism 54 Synchronization as Logic Entailment 55 Constraint Structures 66 A Simple Concurrent Constraint Language 77 First-class Procedures 98 Cells 119 Ports 1210 Names 1311 Agents 1312 Objects 1513 Distribution 1614 Incremental Tell 1615 Propagators 1816 Threads 1817 Time 1918 Encapsulated Search 2019 Summary 202

www.manaraa.com

1 IntroductionComputer systems are undergoing a revolution. Twenty years ago, they were centralized,isolated, and expensive. Today, they are parallel, distributed, networked, and inexpensive.However, advances in software construction have failed to keep pace with advances inhardware. To a large extent, this is a consequence of the fact that current programminglanguages were conceived for sequential and centralized programming.A basic problem with existing programming languages is that they delegate the creationand coordination of concurrent computational activities to the underlying operating systemand network protocols. This has the severe disadvantage that the data abstractions of theprogramming language cannot be shared between communicating computational agents.Thus the bene�ts of existing programming languages do not extend to the central concernsof concurrent and distributed software systems.Given this state of a�airs, the development of concurrent programming models is an impor-tant research issue in Computer Science. A concurrent programming model must supportthe creation and coordination of multiple computational activities. Simple concurrent pro-gramming models can be obtained by accommodating concurrency in the basic controlstructure of the model. This way concurrency appears as a generalization rather than anadditional feature.The development of simple, practical, high-level, and well-founded concurrent programmingmodels turned out to be di�cult. The main problem was the lack of a methodologyand formal machinery for designing and de�ning such models. In the 1980's, signi�cantprogress has been made on this issue. This includes the development of abstract syntax andstructural operational semantics [17, 27]; functional and logic programming, two declarativeprogramming models building on the work of logicians (lambda calculus and predicatelogic); CCS [12] and the �-calculus [13], two well-founded concurrent programming modelsdeveloped by Milner and others; and the concurrent constraint model [10, 18], a concurrentprogramming model that originated from application-driven research in concurrent logicprogramming [21] and constraint logic programming [6].This paper reports on the Oz Programming Model, OPM for short, which has been de-veloped together with the concurrent high-level programming language Oz. OPM is anextension of the basic concurrent constraint model, adding �rst-class procedures and state-ful data structures. OPM is a concurrent programming model that subsumes higher-orderfunctional and object-oriented programming as facets of a general model. This is particu-larly interesting for concurrent object-oriented programming, for which no comprehensiveformal model existed until now. There is a conservative extension of OPM providing theproblem-solving capabilities of constraint logic programming. The resulting problem solv-ers appear as concurrent agents encapsulating search and speculative computation withconstraints.Oz and OPM have been developed at the DFKI since 1991. Oz [25, 23, 22] is designed3

www.manaraa.com

as a concurrent high-level language that can replace sequential high-level languages suchas Lisp, Prolog and Smalltalk. There is no other concurrent language combining a richobject system with advanced features for symbolic processing and problem solving. Firstapplications of Oz include simulations, multi-agent systems, natural language processing,virtual reality, graphical user interfaces, scheduling, time tabling, placement problems, andcon�guration. The design and implementation of Oz took ideas from AKL [7], the �rstconcurrent constraint language with encapsulated search.An e�cient, robust, and interactive implementation of Oz, DFKI Oz, is freely availablefor many Unix-based platforms (see remark at the end of this paper). DFKI Oz featuresa programming interface based on GNU Emacs, a concurrent browser, an object-orientedinterface to Tcl/Tk for building graphical user interfaces, powerful interoperability features,an incremental compiler, and a run-time system with an emulator and a garbage collector.DFKI Oz proves that an inherently concurrent language can be implemented e�ciently onsequential hardware. Research on a portable parallel implementation for shared memorymachines has started. More ambitiously, we have also begun work towards a distributedversion of Oz supporting the construction of open systems.This paper describes OPM in an informal manner. Calculi formalizing the major aspectsof OPM can be found in [23, 22]. The Oz Primer [25] is an introduction to programmingin Oz. Basic implementation techniques for Oz are reported in [11].2 Computation SpacesComputation in OPM takes place in a computation space host-ing a number of tasks connected to a shared store. Computa-tion advances by reduction of tasks. The reduction of a task Task � � � TaskStorecan manipulate the store and create new tasks. When a task is reduced it disappears.Reduction of tasks is an atomic operation, and tasks are reduced one by one. Thus thereis no parallelism at the abstraction level of OPM.Tasks can synchronize on the store in that they become reducible only once the store satis-�es certain conditions. A key property of OPM is that task synchronization is monotonic,that is, a reducible task stays reducible if other tasks are reduced before it.Typically, many tasks are reducible in a given state of a computation space. To obtainfairness, reactivity, and e�ciency, a reduction strategy is needed to select the reducibletasks qualifying for the next reduction step. Fairness ensures that several groups of taskscan advance simultaneously. Reactivity means that one can create computations that reactto outside events within foreseeable time bounds. The following is an example of a fair andreactive reduction strategy:All tasks are maintained in a queue, where the �rst task of the queue is the oneto be considered next for reduction. If it is not reducible, it is moved to the4

www.manaraa.com

end of the queue. If it is reducible, it is reduced and the newly created tasksare appended at the end of the queue.We will see later that this strategy is ine�cient since its degree of fairness is too �ne-grainedfor OPM. A practical reduction strategy will be given in Section 16.3 Concurrency and ParallelismOPM is a concurrent and nonparallel programming model. Concurrency means that onecan create several simultaneously advancing computations, possibly synchronizing and com-municating. Parallelism means that the execution of several hardware operations overlapsin time. Concurrency can be obtained in a nonparallel setting by interleaving reductionsteps. This is typically the case in operating systems that advance several concurrent pro-cesses on single processor machines. We can see concurrency as a programming abstractionand parallelism as a physical phenomenon.The fact that OPM is nonparallel does not exclude a parallel implementation, however.The reason for making OPM concurrent but not parallel is the desire to make things assimple as possible for programmers. In OPM, the semantics of programs does not dependon whether they run on a sequential or parallel implementation. Thus the complexities ofparallelism need only concern the implementors of OPM, not the programmers.4 Synchronization as Logic EntailmentWe will now see how OPM realizes monotonic task synchronization. The basic idea isvery simple. We assume that a set of logic formulas, called constraints, is given. The setof constraints is closed under conjunction, and for constraints a logic entailment relation(\C implies D") is de�ned. We also assume that the store of a computation space holdsa constraint in a special compartment, called the constraint store. The only way theconstraint store can be updated is by telling it a constraint C, which means that theconstraint store advances from S to the conjunction S ^ C. Finally, we assume that itis possible to synchronize a task on a constraint, called its guard. A synchronized taskbecomes reducible if its guard is entailed by the constraint store.It is easy to see that this synchronization mechanism is monotonic. At any point in time,the constraint store can be seen as a conjunctiontrue ^ C1 ^ C2 ^ : : : ^ Cnwhere C1; : : : ; Cn are the constraints told so far. The beauty of this arrangement is that theinformation in the constraint store increases monotonically with every further constrainttold, and that the order in which constraints are told is insigni�cant as far as the informationin the store is concerned (conjunction is an associative and commutative operation).5

www.manaraa.com

We assume that the constraint store is always satis�able. Consequently, it is impossible totell a constraint store S a constraint C if the conjunction S ^ C is unsatis�able.It su�ces to represent the constraint store modulo logic equivalence. This means that thesynchronization mechanism is completely declarative. It turns out that there are constraintsystems for which synchronization as entailment is both expressive and e�cient.Synchronization on a constraint store appeared �rst in Prolog II [4] in the primitive formof the so-called freeze construct. The idea to synchronize on entailment of constraints isdue to Maher [10].5 Constraint StructuresWe now make precise the notions of constraint and entailment. We will also see thatthe constraint store is the place where information about the values participating in acomputation is stored. An important property of the constraint store is the fact that itcan store partial (i.e., incomplete) information about the values of variables.A constraint structure is a structure of �rst-order predicate logic. The elements of a con-straint structure are called values, and the �rst-order formulas over the signature of aconstraint structure are called constraints. We assume that constraints are built over a�xed in�nite alphabet of variables. A constraint C entails a constraint D if the implicationC ! D is valid in the constraint structure. A constraint C disentails a constraint D if Centails :D. Two constraints C and D are equivalent if C entails D and D entails C.The constraint structure must be chosen such that its elements are the values we wantto compute with. The values will typically include numbers, ordered pairs of values, andadditional primitive entities called names. Values can be thought of as stateless datastructures. Note that this set-up requires that values are de�ned as mathematical entities,and that operations on values are described as mathematical functions and relations.To ensure that checking entailment between the constraint store and guards is computa-tionally inexpensive, one must carefully restrict the constraints that can be written in theconstraint store and that can be used as guards.We now outline a concrete constraint structure INP. As values of INP we take the integers,an in�nite set of primitive entities called names, and all ordered pairs that can be obtainedover integers and names. We write v1jv2 for the ordered pair whose left component isthe value v1 and whose right component is the value v2. Moreover, we assume that thesignature of INP provides the following primitive constraints:� x = n says that the value of the variable x is the integer n.� x = � says that the value of the variable x is the name �.� x = yjz says that the value of the variable x is the pair having the value of thevariable y as left and the value of the variable z as right component.6

www.manaraa.com

� x = y says that the variables x and y have the same value.An example of a constraint store over INP isx = y ^ y = zju ^ z = 3:This constraint store asserts that the value of z is 3, that the value of y is a pair whoseleft component is 3, and that x and y have the same value. While this constraint store hastotal information about the value of the variable z, it has only partial information aboutthe values of the other variables. In fact, it has no information about any variable otherthan x, y and z.The constraint store above entails the constraint x = 3ju and disentails the constraintx = 3. It neither entails nor disentails the constraint y = 3j5.In practice, one uses more expressive constraint structures than INP. The constraint struc-ture CFT [26, 2] o�ers constraints over possibly in�nite records called feature trees. Ozemploys an extension of CFT.6 A Simple Concurrent Constraint LanguageWe now present a sublanguage OCC of OPM that is also a sublanguage of Saraswat'sconcurrent constraint model [18]. OCC cannot yet express indeterministic choice, whichwe will accommodate later (see Section 8).The store of an OCC computation space consists only of the constraint store. As constraintstructure we take INP to be concrete. As tasks we take expressions according to the abstractsyntax E ::= C constraintj E1 ^E2 compositionj if C then E1 else E2 conditionalj local x in E declarationwhere C ranges over a suitably restricted class of constraints, and where x ranges over thevariables used in constraints. A declaration local x in E binds the variable x with scopeE. Free and bound variables of expressions are de�ned accordingly.An OCC computation space consists of tasks which are expressions asde�ned above and a store which is a satis�able constraint. Tasks whichare constraints, compositions or declarations are unsynchronized. Con- E � � � ECditional tasks synchronize on the constraint store and become reducible only once theirguard is entailed or disentailed by the constraint store.The reduction of a constraint task C tells the constraint store the constraint C. We say thatsuch a reduction performs a tell operation. If the conjunction S^C of the present constraint7

www.manaraa.com

store S and C is satis�able, the reduction of the task C will advance the constraint storeto S ^C. If the conjunction S ^C of the present constraint store S and C is unsatis�able,the reduction of the task C will not change the constraint store and announce failure. Aconcrete language has three possibilities to handle the announcement of failure: to ignoreit, to abort computation, or to handle it by an exception handling mechanism.Reduction of a composition E1^E2 creates two tasksE1 and E2. Reduction of a conditionalif C then E1 else E2 creates the task E1 if C is entailed and the taskE2 if C is disentailedby the constraint store. Reduction of a declaration local x in E chooses a fresh variabley and creates the task E[y=x] obtained from E by replacing all free occurrences of x withy. A variable is fresh if it does not occur in the current state of the computation space.The expressions of OCC provide basic operations for concurrent programming. Composi-tions make it possible to obtain several concurrent tasks from a single task. Conditionalsmake it possible to synchronize tasks on the constraint store. Telling constraints makes itpossible to �re synchronized tasks. Declarations make it possible to obtain fresh variables.This will become signi�cant as soon as we introduce procedures. For now observe that twoidentical tasks local x in E will reduce to two di�erent tasks E[y=x] and E[z=x], where yand z are distinct fresh variables.Telling constraints makes it possible to assert information about the values of variables(e.g., x = 7). The combination of conditionals and telling makes it possible to access theconstituents of nonprimitive values. The taskif 9y9z(x = yjz) then x = ujv else Ewill equate the variables u and v to the left and right component of x if x turns out tobe pair, and reduce to the task E otherwise. We call this construction a synchronizeddecomposition. To have a convenient notation, we will writeif x1 : : :xn in C then E1 else E2as an abbreviation forif 9x1 : : : 9xn C then local x1 in : : : local xn in (C ^ E1) else E2With that we can write the above task asif y z in x = yjz then u = y ^ v = z else EThe reason for having the conditional synchronize symmetrically on entailment and dis-entailment is that the incremental algorithms for checking entailment automatically alsocheck for disentailment [1, 26]. These algorithms have in fact three outcomes: entailed,disentailed, or neither. The symmetric form of the conditional also has the nice propertythat it makes negated guards unnecessary since if :C then E1 else E2 is equivalent toif C then E2 else E1.Given a state of a computation space, we say that a variable x is bound to an integer n [aname �, a pair] if the constraint store entails the constraint x = n [x = �, 9y9z(x = yjz)].8

www.manaraa.com

7 First-class ProceduresEvery programming language has procedures. Procedures are the basic mechanism forexpressing programming abstractions. If provided in full generality, procedures have spec-tacular expressivity. As is well-known from the lambda calculus, creation and applicationof nonrecursive functional procedures alone can express all computable functions.A programming language provides �rst-class procedures if� procedures can create new procedures,� procedures can have lexically scoped global variables,� procedures are referred to by �rst-class values.First-class procedures are available in functional programming languages such as Scheme,SML or Haskell. They are typically not available in today's concurrent programminglanguages although they can provide crucial functionality for concurrent and distributedprogramming (see the later sections of this paper and also [3]).In OPM, a procedure is a triple �: z=Econsisting of a name � (see Section 5), a formal argument z (a variable), and a body E (anexpression). A procedure binds its formal argument z with scope E. The free or globalvariables of a procedure are de�ned accordingly. Procedures can actually have any numberof formal arguments, but for now we consider only one argument to ease our presentation.Besides the constraint store, OPM's store has a second compartment called the procedurestore. The procedure store contains �nitely many procedures such that for one name thereis at most one procedure. Once a procedure has been entered into the procedure store, itcannot be retracted. Information about the values of the global variables of a procedureis kept in the constraint store. What we call a procedure is often called a closure in theliterature.There are two new expressions for creating and applying procedures:E ::= proc fx zg E de�nitionj fx yg applicationA de�nition proc fx zg E binds its formal argument z (a variable) with scope E. De�-nitions are always reducible. The reduction of a de�nition proc fx zg E chooses a freshname �, tells the constraint store the constraint x = �, and writes the new procedure �: z=Einto the procedure store.An application fx yg must wait until the procedure store contains a procedure �: z=E suchthat the constraint store entails x = �. If this is the case, the application task fx yg can9

www.manaraa.com

reduce to the taskE[y=z], which is obtained from the body of the procedure by replacing allfree occurrences of the formal argument z with the actual argument y, avoiding capturing.The sublanguage of OPM introduced so far can express both eager and lazy higher-orderfunctional programming [23]. For instance, a higher-order functionMkMap: (Value ! Value) ! (List ! List)returning a list mapping function can be expressed as a binary procedureproc {MkMap F Map}proc {Map Xs Ys}if X Xr in Xs=X|Xr thenlocal Y Yr in Ys=Y|Yr {F X Y} {Map Xr Yr} endelse Ys=Nil fiendendWe are now using concrete Oz syntax, where a composition E1 ^E2 is written as a juxta-position E1 E2. A list v1; : : : ; vn is represented as a nested pair (v1j(: : :(vnj�)) : : :), where� is a name representing the empty list. We assume that the variable Nil is bound to �.The procedure MkMap takes a binary procedure F as input and creates a binary procedureMap mapping lists elementwise according to F.Since our model employs logic variables, there is no static distinction between input andoutput arguments. The functionality o�ered by a procedure �: z=E is simply the ability tospawn any number of tasks E[y=z], where the variable y replacing the formal argument zcan be chosen freely each time.To ease our notation, we will suppress auxiliary variables by means of nesting. For instance,we will write{{MkMap F} 1|2|Nil X}as an abbreviation forlocal Map One Two A B in{MkMap F Map} One=1 Two=2 A=One|B B=Two|Nil {Map A X}endThe procedure MkMap actually implements a concurrent function. For instance, the task{{MkMap F} A|B|C X}will tell the constraint X=U|V|W, where U, V, and W are fresh variables. It will also createtasks that automatically synchronize on the variables F, A, B, and C and that will computethe values of U, V, and W when the necessary information is available.The representation of functional computation as concurrent computation has been stud-ied carefully for calculi formalizing the relevant aspects of OPM [23, 16, 15]. The mainresults include the identi�cation of con
uent subcalculi, embeddings of the eager and the10

www.manaraa.com

lazy lambda calculus, and a correctness proof for the eager embedding. Lazy functionalprogramming can be embedded such that argument computations are shared, a crucialfeature of implementations that cannot be modeled with the lambda calculus [9].OPM combines higher-order programming with �rst-order constraints. The idea to inter-face variables and procedures through freshly chosen names appeared �rst in Fresh [24].8 CellsBesides the constraint and the procedure store, OPM's store has a third and �nal compart-ment called the cell store. A cell is a mutable binding of a name to a variable. Cells makeit possible to express stateful and concurrent data structures, which can serve as a com-munication medium between concurrent agents. There is an exchange operation on cellsthat combines reading and writing into a single atomic operation, thus providing mutualexclusion and indeterminism as needed for many-to-one communication.The cell store contains �nitely many cells �: x representing mutable bindings of names tovariables. Similar to the procedure store, the cell store contains at most one cell per name.Given a cell �: x in the cell store, we say that the cell � hosts the variable x. The task{NewCell X Y}chooses a fresh name �, tells the constraint store the constraint Y = �, and writes the newcell �: X into the cell store. Once a cell has been entered into the cell store, it cannot beretracted. The task{Exchange X Y Z}must wait until the cell store contains a cell �: u such that the constraint store entails X = �.The task can then be reduced by updating the cell to host the variable Z and telling theconstraint store the constraint Y = u.Cells introduce indeterminism into OPM since the order in which multiple exchange tasksfor the same cell are reduced is unspeci�ed.Cells are di�erent from assignable variables in multi-threaded imperative languages. Forone thing, OPM ensures mutual exclusion for concurrent exchange tasks for the samecell (since OPM is nonparallel and task reduction is an atomic operation). Moreover, anexchange task combines reading and writing of a cell into a single atomic operation. In thepresence of logic variables, this atomic combination turns out to be expressive since onecan write a new variable into a cell whose value will be computed only afterwards fromthe value of the old variable in the cell. This cannot be obtained in an imperative settingsince it requires that consumers of a variable are automatically synchronized on the eventthat the value of the variable becomes known.11

www.manaraa.com

9 PortsBuilding on cells, we can express complex concurrent data structures with state. Theinternal structure of such data structures can be hidden by means of procedural abstractionand lexical scoping of variables. We can thus obtain abstract concurrent data types withstate.As a �rst example we consider ports [8], which can serve as message queues for agents. Aport is a procedure connected to a stream. A stream is a variable S that is incrementallyconstrained to a list by telling a constraint for every element of the list:S=X1|S1, S1=X2|S2, S2=X3|S3, S3=X4|S4, ...It is assumed that nobody but the procedure P writes on the stream. An application {P X}will tell a constraint Si=X|Si+1, where Si is the current tail of the stream and Si+1 is a newvariable serving as the new tail of the stream. A port has state because it must rememberthe current tail of its stream. A port is a concurrent data structure since it allows severalconcurrent computations to write consistently on a single stream.The procedureproc {NewPort Stream Port}local Cell in{NewCell Stream Cell}proc {Port Message}local Old New in{Exchange Cell Old New} Old=Message|Newendendendendcreates a new port Port connected to a stream Stream. The port holds the current tailof its stream in a private cell Cell. Note how lexical scoping ensures that no one but theport can see the cell. Also note that NewPort is a higher-order procedure in that it createsand returns a new procedure Port.How can we enter two messages A and B to a port such that A appears before B on theassociated stream? To make things more interesting, we are looking for a solution makingit possible that other concurrently sent messages can be received between A and B (it maytake a long time before B is sent).One possible solution makes assumptions about the employed reduction strategy (see Sec-tion 16). Here we will give a solution that will work for every reduction strategy. The basicidea is to model a port as a binary procedure{Port Message Continuation}that will tell the constraint Continuation=Port after Message has been put on thestream [8]. Two messages A and B can then be sequentialized by writing12

www.manaraa.com

local Continuation Dummy in{Port A Continuation} {Continuation B Dummy}endSuch synchronizing ports can be created withproc {NewSyncPort Stream Port}local Cell in{NewCell Port|Stream Cell}proc {Port Message Continuation}local New in{Exchange Cell Continuation|Message|New Port|New}endendendend10 NamesNames serve as dynamically created capabilities that cannot be faked. It is often useful tobe able to obtain reference to fresh names that do not designate procedures or cells. Forthis purpose we introduce a primitive task{NewName X}which can be reduced by choosing a fresh name � and telling the constraint X=�. Referring tonames by means of variables has the advantage of lexical scoping and also avoids the need fora concrete syntax for names. Using names, lexical scoping, and procedures, sophisticatedaccess control schemes can be expressed.11 AgentsAn agent is a computational abstraction processing messages received through a port. Itmaintains an internal state and may send messages to other agents. An example of anagent is a queue that can handle concurrent enqueue and dequeue requests.We assume that the functionality of an agent is given by a procedureServe: State � Message ! NewStatedescribing how the agent serves a message and how it advances its state. The procedure13

www.manaraa.com

proc {NewAgent Serve Init Port}local Stream Feed in{NewPort Stream Port}{Feed Stream Init}proc {Feed Ms State}if Message Mr NewState in Ms=Message|Mr then{Serve State Message NewState} {Feed Mr NewState}else true fiendendendcreates a new agent that receives messages through Port and operates as speci�ed by theprocedure Serve and the initial state Init. Note that an agent hides the stream queueingits messages.A queue agent receiving messages through a port Q can be created withlocal Xs in {NewAgent QueueServe Xs|Xs Q} endwhere the procedure QueueServe is de�ned as follows:{NewName Enqueue}{NewName Dequeue}proc {QueueServe State Message NewState}if First Last in State=First|Last thenif X NewLast in Message=Enqueue|X thenLast=X|NewLast NewState=First|NewLastelseif X NewFirst in Message=Dequeue|X thenFirst=X|NewFirst NewState=NewFirst|Lastelse true fifielse true fiendMessages are represented as pairs Enqueue|X and Dequeue|X, where the variables Enqueueand Dequeue are bound to names identifying the corresponding operations. Using lexicalscoping, one can construct contexts in which none or only one of the two operations isvisible.A message Enqueue|X will enqueue X, and a message Dequeue|X will dequeue an itemand bind it to X. In case the queue is empty, a dequeue request will wait in a queue ofunserved dequeue requests, which is served as soon as an item is entered into the queue.The procedure QueueServe shows that this synchronization idea can be expressed elegantlyby means of logic variables. 14

www.manaraa.com

12 ObjectsObjects are a modular programming abstraction for concurrent data structures with state.We model objects as procedures {Object Message} that are applied to messages. A mes-sage is a pair MethodName|Argument. When an object is applied to a message, it invokesthe requested method with the given argument and advances to a new state. Similar toagents, we assume that the functionality of an object is speci�ed by a procedureServe: State � Message � Self ! NewStatedescribing how the agent serves a message and how it advances its state. The argumentSelf is a reference to the object invoking Serve making it possible to have a self referencewithin Serve and still share Serve between several objects. The procedureproc {NewObject Serve Init Object}local Cell in{NewCell Init Cell}proc {Object Message}local State NewState in{Exchange Cell State NewState}{Serve State Message Object NewState}endendendendcreates a new object Object from a procedure Serve and an initial state Init.It is straightforward to express classes de�ning serve procedures in a modular fashion bymeans of named methods. Methods are modeled as procedures similar to serve procedures.Objects can then be obtained as instances of classes. The states of objects are modeledas �nite mappings from attributes to variables, where attributes are modeled as names.Methods can then construct new states from given states by \assigning" variables to at-tributes. One can also provide for inheritance, that is, the ability to construct new classesby inheriting methods and attributes from existing classes. All this is a matter of straight-forward higher-order programming. Exploiting the power of lexical scoping and names, itis straightforward to express private attributes and methods.OPM is a simple and powerful base for expressing concurrent object-oriented programmingabstractions. It was in fact designed for this purpose. Concrete programming languages willof course sweeten frequently used programming abstractions with a convenient notation.For a concrete system of object-oriented abstractions and notations we refer the reader tothe Oz object system [5, 25].The reader will have noticed the similarity between agents and objects. We can see agentsas active objects. An object can easily be turned into an agent by interfacing it through aport. 15

www.manaraa.com

13 DistributionOPM can be extended to serve as a model for distributed programming. Distributionmeans that a program can spread computations over a network of computers. At theabstraction level of OPM, this can be modeled by assigning a site to every task and byassuming that the store is distributed transparently. Moreover, we assume that new tasksinherit the site of the creating task.We can now see a clear di�erence between agents and objects. When we send a messageto an agent, the message is served at the site where the agent was created (there is a taskwaiting for the next message sent). When we apply an object to a message, the messageis served at the site where the object is applied. In other words, agents are stationary andobjects are mobile.Since OPM has �rst-class procedures, it is straightforward to express compute servers.Cardelli [3] gives an excellent exposition of distributed programming techniques availablein a lexically-scoped language with �rst-class procedures and concurrent state.The assumption of a transparently distributed store is not realistic for many applications.It con
icts with the ability to model fault-tolerance, for instance. We have started work ona less abstract model where the store appears as a directed graph whose nodes are situatedsimilar to tasks.14 Incremental TellThe tell operation of OCC (see Section 6) is not suitable for a parallel implementation. Thereason is that a constraint must be told in a single reduction step. Since telling a constraint(e.g., x = y) may involve scanning the entire store, other tell tasks may be blocked for along time. The problem can be resolved by telling a constraint piecewise. The basic idea isto reduce a constraint task T by keeping the task T as is and by advancing the constraintstore from S to a slightly stronger constraint store S 0 entailed by S ^ T . This amplifyingreduction step is repeated until the constraint store entails T , in which case the task T isdiscarded. Since the constraint store must always be satis�able, the case where S ^ T isunsatis�able needs special care.To make the incremental tell operation precise, we introduce the notion of a constraint sys-tem. A constraint system consists of a constraint structure, a set of constraints called basicconstraints, and, for every basic constraint T , a binary relation !T on basic constraintssuch that:1. The basic constraints are closed under conjunction and contain ? (i.e., false).2. For every basic constraint T , the relation !T is well-founded, that is, there exists noin�nite chain S1 !T S2 !T S3 !T � � � .16

www.manaraa.com

3. If S !T S 0, then (i) S 0 entails S, (ii) S ^ T entails S 0, (iii) S is satis�able, and (iv)S 0 is unsatis�able if and only if S 0 = ?.4. If T is not entailed by S and both are basic constraints, then there exists S 0 suchthat S !T S0.The tell reductions !T correspond to the visible simpli�cation steps of the incrementalalgorithms implementing the necessary operations on constraint stores. Such algorithmscan be found, for instance, in [1, 26]. Note that the tell reductions may be nondeterministic;that is, for given S and T , there may be di�erent S1 and S2 such that S !T S1 andS !T S2.Let S be a satis�able basic constraint and T a basic constraint. Then the tell reduction!T satis�es the following properties:1. S entails T if and only if S is irreducible with respect to !T .2. S disentails T if and only if every maximal chain S !T � � � ends with ?.3. Let S !T � � � !T S 0 be a chain such that S 0 is irreducible with respect to T . Then(i) S ^ T is equivalent to S 0 and (ii) S ^ T is unsatis�able if and only if S 0 = ?.Given a constraint system, we assume that the constraints appearing in expressions andthe constraint store are all basic, where the constraints appearing in guards may be exis-tentially quanti�ed. Given a constraint store S and a constraint task T , the incrementaltell operation is de�ned as follows: if S is irreducible with respect to !T , then the task Tis discarded. Otherwise, choose some basic constraint S 0 such that S !T S0. If S 0 = ?,then announce failure and discard the task T ; if S 0 6= ?, then advance the constraint storeto S 0 and keep the task T .The canonical constraint system for the constraint structure INP comes with the basicconstraints C ::= ? j > j hprimitive constrainti j C1 ^ C2:Primitive constraints were de�ned in Section 5.As long as failure does not occur, it is not important to know which tell reductions are used.However, if S ^ T is unsatis�able and computation can continue after failure (e.g., sincethere is exception handling), all chains S !T � � � !T S0 should only add local information.The notion of \local information" cannot be made precise in general. However, thereare straightforward de�nitions for INP and other practically relevant constraint systems.Here we will just give an example for INP. Given S � (x = 1j2 ^ y = uj3) and T �(x = y), the tell reduction !T should only permit two maximal chains issuing from S:S !T S ^ u = 1 !T ? and S !T ?. 17

www.manaraa.com

15 PropagatorsThe algorithms for telling and checking entailment and disentailment of basic constraintsmust be e�cient. The typical complexity should be constant time, and the worst-casecomplexity should be quadratic or better in the size of the guard and the constraint store.Consequently, expressive constraints such as x + y = z and x � y = z cannot be writteninto the constraint store and hence cannot be accommodated as basic constraints. (Fornonlinear constraints over integers satis�ability is undecidable (Hilbert's Tenth Problem).)Nonbasic constraints can be accommodated as tasks that wait until the constraint storecontains enough information so that they can be equivalently replaced with basic con-straints. For instance, a task x + y = z may wait until there exist two integers n and msuch that the constraint store entails x = n ^ y = m. If this is the case, the task can bereduced to the basic constraint z = k, where k is the sum of n and m. Nonbasic constraintsthat are accommodated in this way are called propagators.Another example of a propagator is a Boolean order test for integers:less(x; y; z) � (x < y $ z = True) ^ (z = True_ z = False):True and False are variables bound to distinct names. This propagator can reduce toz = True or z = False as soon as the constraint store contains su�cient information aboutthe values of x and y.16 ThreadsWe now give an e�cient reduction strategy for OPM that is fair and reactive (see Section 2).An e�cient reduction strategy must make it possible to write programs that create only amoderate amount of concurrency, which can be implemented e�ciently on both single andmulti-processor architectures.The example of the Fibonacci function (we use a sugared notation suppressing auxiliaryvariables)proc {Fib N M}local B X Y in{Less 2 N B}if B=True then {Fib N-1 X} {Fib N-2 Y} X+Y=M else M=1 fiendend 18

www.manaraa.com

shows that the naive reduction strategy inSection 2 is impractical: it will traversethe recursion tree of {Fib 5 M}, say, inbreadth-�rst manner, thus requiring expo-nential space. On the other hand, sequentialexecution will traverse the recursion tree indepth-�rst manner from left to right and will 54 33 2 2 12 1thus only need linear space. This di�erence clearly matters.The e�cient reduction strategy organizes tasks into threads,where every thread is guaranteed to make progress. Thusfairness is guaranteed at the level of threads. A thread is Thread � � � ThreadStorea nonempty stack of tasks, where only the topmost task of a thread can be reduced. If thetopmost task of a thread is reduced, it is replaced with the newly created tasks, if thereare any. If a composition E1 ^ E2 is reduced, the left expression E1 goes on top of theright expression E2, which means that E1 is considered before E2. If the topmost task ofa thread is irreducible over the current store and the thread contains further tasks, thetopmost task is moved to a newly created thread. A thread disappears as soon as it hasno task left.The outlined reduction strategy tries to be as sequential as possible and as concurrent asnecessary. It will execute the task {Fib 5 M} sequentially in a single thread, thus requiringonly linear space.The concurrent execution of an expression E in a separate thread can be forced by writinglocal Fire in if Fire=1 then E else true fi Fire=1 endWith threads it is straightforward to send messages sequentially through a port. If portsare de�ned as in Section 9, the simple composition{Port A} {Port B}will send A before B provided the store binds Port already to a port.17 TimeIt is straightforward to extend OPM such that tasks can be synchronized on time points.Here we specify a timer primitive{Sleep T X Y}which equates two variables X and Y after the time span speci�ed by the variable T haspassed. The timer primitive �rst waits until the store binds T to an integer n. It then staysirreducible for further n milliseconds, after which it can be reduced to the constraint X=Y.19

www.manaraa.com

18 Encapsulated SearchSince OPM has constraints and logic variables, it will subsume the problem solving ca-pabilities of constraint logic programming when extended with a nondeterministic choicecombinator. However, a completely new idea is needed for encapsulating the resultingproblem solvers into concurrent agents.A nondeterministic choice combinator can be provided as an expressionE1 or E2called a choice. Choice tasks can only be reduced if no other task is reducible. If this isthe case, a choice can be reduced by distributing the computation space into two spacesobtained by replacing the choice with its left and right alternative, respectively. Theresulting search tree of computation spaces can be explored with a suitable strategy. Ifa tell operation announces failure, computation in the corresponding computation spaceis aborted. The leaves of the search tree are either failed or unfailed computation spaces.Unfailed leaves will contain the solutions of the problem being solved as bindings to certainvariables.While the outlined semantics for nondeterministic choice provides the expressivity of con-straint logic programming, distributing the top level computation space is not compatiblewith the idea of concurrent computation. What we would like to have are concurrent agentsto which we can present a search strategy and a problem to be solved and from which wecan request the solutions of the problem one by one. This means that the search agentshould encapsulate search. It turns out that such a search agent can be programmed witha single further primitive, called a search combinator. The search combinator spawns asubordinate computation space and reduces in case the subordinate space fails, becomesirreducible, or is distributed. In the case of distribution, the two alternative local spacesare frozen and returned as �rst-class citizens represented as procedures. The details of thiselaborate construction are reported in [20, 19, 22].The resulting model is realized in Oz together with further concurrent constraint combi-nators [20, 19, 14]. Oz gets constraint logic programming out of its problem solving ghettoand integrates it into a concurrent and lexically scoped language with �rst-class proce-dures and state. This integration eliminates the need for Prolog's ad hoc constructs andalso increases the expressivity of the problem solving constructs.19 SummaryWe have presented a simple and expressive model OPM for high-level concurrent program-ming. The model is lexically scoped and consists of the concurrent constraint kernel OCC,�rst-class procedures, and cells providing for concurrent state. It computes with logic vari-ables and constraints and monotonically synchronizes on a declarative constraint store.20

www.manaraa.com

The constraint store is the exclusive place where information about the values of variablesis stored. Dynamically created values called names interface the constraint store with theprocedure and the cell store. This way OPM realizes an orthogonal combination of �rst-order constraints with �rst-class procedures and stateful cells. We have shown how OPMcan express higher-order functions, agents and objects. We have added an incrementaltell operation to improve the potential for parallelism. We have also added propagators,threads, and a timer primitive as needed for a practical language. Finally, we have outlinedhow the model can be extended so that it can express encapsulated problem solvers gen-eralizing the problem solving capabilities of constraint logic programming. Oz translatesthe presented ideas into an exciting new programming language.AcknowledgementsThe development of OPM and Oz would have been impossible without the combined con-tributions of the members of the Programming Systems Lab at DFKI. Much inspirationand technical knowledge came from the developers of AKL at SICS, the developers of LIFEat Digital PRL, and the other partners of the Esprit basic research action ACCLAIM.I'm grateful to Seif Haridi, Martin Henz, Michael Mehl, Joachim Niehren, Andreas Podel-ski, and Christian Schulte who read and commented on drafts of this paper.The research reported in this paper has been supported by the BMBF (contract ITW9105), the Esprit Basic Research Project ACCLAIM (contract EP 7195), and the EspritWorking Group CCL (contract EP 6028).RemarkThe DFKI Oz system and papers of authors from the Programming Systems Lab at DFKIare available through theWeb at http://ps-www.dfki.uni-sb.de/ or through anonymousftp from ps-ftp.dfki.uni-sb.de.References[1] H. A��t-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system for logicprogramming with entailment. Theoretical Computer Science, 122(1{2):263{283, 1994.[2] R. Backofen. A complete axiomatization of a theory with feature and arity constraints.Journal of Logic Programming, 1995. To appear.[3] L. Cardelli. Obliq: A Language with Distributed Scope. In Proc. 22nd Ann. ACMSymposium on Principles of Programming Languages (POPL'95), pages 286{297,1995. 21

www.manaraa.com

[4] A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical principles andcurrent trends. Technology and Science of Informatics, 2(4):255{292, 1983.[5] M. Henz, G. Smolka, and J. W�urtz. Object-oriented concurrent constraint program-ming in Oz. In V. Saraswat and P. V. Hentenryck, editors, Principles and Practice ofConstraint Programming, pages 27{48. The MIT Press, Cambridge, MA, 1995.[6] J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. The Journal ofLogic Programming, 19/20:503{582, 1994.[7] S. Janson and S. Haridi. Programming paradigms of the Andorra kernel language. InV. Saraswat and K. Ueda, editors, Logic Programming, Proc. 1991 Int. Symposium,pages 167{186. The MIT Press, Cambridge, MA, 1991.[8] S. Janson, J. Montelius, and S. Haridi. Ports for objects. In Research Directions inConcurrent Object-Oriented Programming. The MIT Press, Cambridge, MA, 1993.[9] J. Launchbury. A natural semantics for lazy evaluation. In Proc. 20th Ann. ACM Sym-posium on Principles of Programming Languages (POPL'93), pages 144{154, 1993.[10] M. J. Maher. Logic semantics for a class of committed-choice programs. In J.-L.Lassez, editor, Logic Programming, Proc. 4th Int. Conference, pages 858{876. TheMIT Press, Cambridge, MA, 1987.[11] M. Mehl, R. Scheidhauer, and C. Schulte. An abstract machine for Oz. In Proc. 7thInt. Symposium on Programming Languages, Implementations, Logics and Programs(PLILP'95). Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995. Toappear.[12] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science,Vol. 92, Springer-Verlag, Berlin, 1980.[13] R. Milner. Functions as processes. Journal of Mathematical Structures in ComputerScience, 2(2):119{141, 1992.[14] T. M�uller, K. Popow, C. Schulte, and J. W�urtz. Constraint programming in Oz. DFKIOz documentation series, DFKI, Saarbr�ucken, Germany, 1994.[15] J. Niehren. Funktionale Berechnung in einem uniform nebenl�au�gen Kalk�ul mit lo-gischen Variablen. Doctoral Dissertation. Universit�at des Saarlandes, Saarbr�ucken,Germany, December 1994. Submitted.[16] J. Niehren and G. Smolka. A con
uent relational calculus for higher-order program-ming with constraints. In J.-P. Jouannaud, editor, Proc. 1st Int. Conference on Con-straints in Computational Logics (CCL'94), pages 89{104. Lecture Notes in ComputerScience, Vol. 845, Springer-Verlag, Berlin, 1994.22

www.manaraa.com

[17] G. D. Plotkin. A structural approach to operational semantics. DAIMI FN-19, Dept.of Computer Science, Aarhus University, Denmark, 1981. Reprinted 1991.[18] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,MA, 1993.[19] C. Schulte and G. Smolka. Encapsulated search in higher-order concurrent constraintprogramming. In M. Bruynooghe, editor, Logic Programming, Proc. 1994 Int. Sym-posium, pages 505{520. The MIT Press, Cambridge, MA, 1994.[20] C. Schulte, G. Smolka, and J. W�urtz. Encapsulated search and constraint program-ming in Oz. In A. Borning, editor, Proc. 2nd Int. Workshop on Principles and Practiceof Constraint Programming (PPCP'94), pages 134{150. Lecture Notes in ComputerScience, Vol. 874, Springer-Verlag, Berlin, 1994.[21] E. Shapiro. The family of concurrent logic programming languages. ACM ComputingSurveys, 21(3):413{511, 1989.[22] G. Smolka. The de�nition of Kernel Oz. In A. Podelski, editor, Constraints: Basicsand Trends, pages 251{292. Lecture Notes in Computer Science, Vol. 910, Springer-Verlag, Berlin, 1995.[23] G. Smolka. A foundation for higher-order concurrent constraint programming. In J.-P.Jouannaud, editor, Proc. 1st Int. Conference on Constraints in Computational Logics(CCL'94), pages 50{72. Lecture Notes in Computer Science, Vol. 845, Springer-Verlag,Berlin, 1994.[24] G. Smolka. Fresh: A higher-order language with uni�cation and multiple results. InD. DeGroot and G. Lindstrom, editors, Logic Programming: Relations, Functions,and Equations, pages 469{524. Prentice-Hall, Englewood Cli�s, NJ, 1986.[25] G. Smolka. An Oz primer. DFKI Oz documentation series, DFKI, Saarbr�ucken,Germany, 1995.[26] G. Smolka and R. Treinen. Records for logic programming. Journal of Logic Program-ming, 18(3):229{258, 1994.[27] G. Winskel. The Formal Semantics of Programming Languages. Foundations of Com-puting. The MIT Press, Cambridge, MA, 1993.
23

